Two-Photon Microscopy Allows Imaging and Characterization of Cochlear Microvasculature In Vivo

نویسندگان

  • Friedrich Ihler
  • Mattis Bertlich
  • Bernhard Weiss
  • Steffen Dietzel
  • Martin Canis
چکیده

Impairment of cochlear blood flow has been discussed as factor in the pathophysiology of various inner ear disorders. However, the microscopic study of cochlear microcirculation is limited due to small scale and anatomical constraints. Here, two-photon fluorescence microscopy is applied to visualize cochlear microvessels. Guinea pigs were injected with Fluorescein isothiocyanate- or Texas red-dextrane as plasma marker. Intravital microscopy was performed in four animals and explanted cochleae from four animals were studied. The vascular architecture of the cochlea was visualized up to a depth of 90.0±22.7 μm. Imaging yielded a mean contrast-to-noise ratio (CNR) of 3.3±1.7. Mean diameter in vivo was 16.5±6.0 μm for arterioles and 8.0±2.4 μm for capillaries. In explanted cochleae, the diameter of radiating arterioles and capillaries was measured with 12.2±1.6 μm and 6.6±1.0 μm, respectively. The difference between capillaries and arterioles was statistically significant in both experimental setups (P<0.001 and P=0.022, two-way ANOVA). Measured vessel diameters in vivo and ex vivo were in agreement with published data. We conclude that two-photon fluorescence microscopy allows the investigation of cochlear microvessels and is potentially a valuable tool for inner ear research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo.

Direct visualization of microvasculature provides significant insights in microcirculation and critically impacts the diagnosis and treatment of microcirculatory diseases. Recently, we discovered that the high-energy Soret fluorescence of hemoglobin peaked at 438 nm with an extremely short lifetime becomes strongly visible under two-photon excitation. Based on the distinct spectral and temporal...

متن کامل

Synthesis and characterization of CdO/GrO nanolayer for in vivo imaging

Objective(s): Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity. Nanoparticles have enabled significant advances in pre-clinical cancer research as drug delivery vectors. Inorganic nanoparticles such as CdO/GrO nanoparticles have novel optical properties that can be used to optimize the signal-to-background ratio. This paper rep...

متن کامل

In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.

AIMS We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. BACKGROUND Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairm...

متن کامل

I-55: Molecular Imaging Overview

Molecular imaging is the noninvasive visualization of normal as well as abnormal cellular processes at a molecular or genetic level of function. It is used to provide characterization and measurement of biological processes in living animals and humans (in vivo). The discipline of molecular imaging evolved rapidly over the past decade through the integration of cell biology, molecular biology a...

متن کامل

In vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence.

Zebrafish has rapidly evolved as a powerful vertebrate model organism for studying human diseases. Here we first demonstrate a new label-free approach for in vivo imaging of microvasculature, based on the recent discovery and detailed characterization of the two-photon excited endogenous fluorescence in the blood plasma of zebrafish. In particular, three-dimensional reconstruction of the microv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015